Certified Personal TrainerNewsletterSports Performance

The Scientific Rationale for Incorporating Olympic Weightlifting to Enhance Sports Performance

IMAGE_PES_OlympicWeighliftingBy Brian Sutton MS, MA, NASM-CPT, CES, PES

Olympic lifts and their variations have long been used as a strengthening technique to enhance sports performance. The use of Olympic weightlifting is evident as regular practice by collegiate and professional strength coaches, and supported in refereed journals (1,2,3,4). As sports performance professionals become more knowledgeable and skilled in designing sport specific programs, more information regarding Olympic lifting is necessary in order to help them best serve their athletes. Before designing an Olympic lifting program it is important for sports performance professionals to understand the scientific rationale and effectiveness of the Olympic lifts.

Olympic weightlifting is technically a sport in which competitions are held locally, nationally, internationally and most notably at the Olympics. The competition lifts are the snatch and the clean & jerk. While Olympic weightlifting is a sport, the lifts themselves are commonly used by strength and conditioning coaches to help their athletes improve elements of athletic performance such as strength and power. Furthermore, even more popular among athletes and strength coaches are the variations of the competition lifts such as the power snatch and power clean (3,5). Variation lifts are more widely used because many athletes cannot achieve the deep squat position necessary of the snatch and clean & jerk (5). The power clean and power snatch are preferred because the catch position (receiving position) is performed from a 1/4 squat rather than a full squat position. To learn more about performing and properly assessing if athletes are functionally capable to perform Olympic lifts safely and efficiently see NASM’s Performance Enhancement Specialization.

SAID Principle
When designing a program for enhancing sports performance, one of the most important acute variables sport performance professionals must consider is exercise selection (5). All exercises chosen should follow the Principle of Specificity also known as the SAID Principle (Specific Adaptation to Imposed Demands). The SAID Principle essentially means the body will adapt to the type of demands placed on it. For example, if an athlete continuously lifts heavy loads, the adaptation will be maximal strength. Conversely, if the athlete continuously lifts light loads with high repetitions, the outcome will be muscular endurance. This is a fairly simple concept to understand. In essence, you get what you train for (6).

A majority of sports require explosive power (strength & speed) in order to play up to full potential. While the Olympic lifts do not mimic many specific sport skills such as running, throwing, or catching, they do develop the specific adaptation of explosive power (5). Power is the ability of the body to produce the greatest amount of force in the shortest possible time. This is represented by the simple equation; force multiplied by velocity (7). The two Olympic lifts (snatch, clean & jerk) and their variations (power snatch, power clean) have been shown to increase velocity of movement, and rate of force production (5). In fact, the second pull of the power clean exhibits one of the highest power outputs of any resistance training exercise (5,8). Additionally, maximum strength (force) can be enhanced by performing Olympic weightlifting variations such as heavy squats, deadlifts, and presses (5,9). Thus, it is safe to say, Olympic lifts and their variations adhere to the SAID principle and can be an effective exercise selection for enhancing overall power and athletic performance (as long as the athlete possess the functional and structural capabilities to perform these movements) (5).

The Universal Athletic Position1021 PES Blog
As mentioned earlier, Olympic lifts do not mimic many specific sport skills such as running, throwing, or catching. However, one static/dynamic posture Olympic lifts do mimic often seen in athletics is the Universal Athletic Position (5). This position is described as standing in a quarter squat with feet flat, the hips are behind the center of gravity, shoulders are in front, the torso is flat (inclined at an angle of about 45º) weight distributed on a full foot, hands in front, knees over the toes, and shoulders over the knees (5). The Universal Athletic Position is generally regarded as the most common position in all of sports (5). In some cases, it is used as a static “ready position” such as a linebacker waiting for a play to begin or a baseball player preparing to steal second base. Other times, the athlete moves through the Universal Athletic Position dynamically (during a countermovement or wind-up) to exploit the stretch-shortening cycle (5). The Olympic lifts, when performed correctly, move through the Universal Athletic Position between the first and second pull phases allowing the hip extensors and ground reaction forces to explode the bar vertically (5).

What Does the Research Say?
Now that we have a basic understanding of Olympic weightlifting; what does current research tell us? Can Olympic weightlifting improve elements of athletic performance? While there is no conclusive research study proving Olympic weightlifting improves athletic performance, several studies and peer reviewed articles have shown the effectiveness of an Olympic weightlifting conditioning program on various performance measures including jumping, sprinting, and explosive strength.

  • Carlock et al. concluded that weightlifting ability and vertical jump performance were strongly linked together (5, 10).
  • Channel et al. indicated that Olympic lifts as well as power lifts provide improvement in vertical jump performance. Additionally, Olympic lifts may provide a modest advantage over power lifts for vertical jump improvement in high school athletes (11).
  • Chiu et al. offered advice for strength and conditioning specialists for successfully implementing the “stop snatch” and “stop clean” into a conditioning program for improved athletic performance (7).
  • Hori et al. concluded that high performance in the “hang power clean” is significantly related to jumping and sprinting (12).
  • Hori, Newton et al. illustrated that Olympic weightlifting improves the development of power, high-load speed strength and athletic performance (2).
  • Waller et al. offered advice for strength and conditioning specialists for successfully implementing the “power snatch” into a conditioning program for improved athletic performance (3).

Conclusion
Based on the current evidence, there is ample justification to incorporate Olympic lifts into a sports performance conditioning program. Although no research study can be considered as definitive cause-and-effect, the literature consistently provides enough evidence that Olympic lifts and their derivatives improve rate of force production, high-load speed strength, maximum strength, and vertical jump performance while using dynamic postures (Universal Athletic Position) commonly seen in many sports (5). The combination of all these factors should improve athletic performance for athletes engaging in explosive sports. However, before implementing an Olympic lifting program it is vital to understand the technical aspects, complexities, and structural and functional requirements for athletes to perform these movements safely and effectively.

If you want to learn more about Olympic lifting techniques and how to use them with your clients, be sure to register for the NASM Optima pre-conference workshop from Eleiko Education at http://nasm.co/2rWJDdX

 

 

References:

1. Durell D, Pujol T, Barnes J. A survey of the scientific data and training methods utilized by collegiate strength and conditioning coaches. Journal of Strength & Conditioning Research. May 2003;17(2):368-373.

2. Hori N, Newton R, Nosaka K, Stone M. Weightlifting Exercises Enhance Athletic Performance That Requires High-Load Speed Strength. Strength & Conditioning Journal. August 2005;27(4):50-55.

3. Waller M, Townsend R, Gattone M. Application of the Power Snatch for Athletic Conditioning. Strength & Conditioning Journal. June 2007;29(3):10-20.

4. Stone M, Pierce K, Sands W, Stone M. Weightlifting: Program Design. Strength & Conditioning Journal. April 2006;28(2):10-17.

5. Carbone J, Takano B. Olympic Lifting for Performance Enhancement. In Clark M, Lucett S. NASM’s Essentials of Sports Performance Training. Baltimore, MD Lippincott Williams & Wilkins; 2010.

6. Clark M, Lucett S, Corn R. NASM Essentials of Personal Fitness Training (3rd edition). Lippincott Williams & Wilkins. Baltimore, MD. 2008.

7. Chiu L, Schilling B. The stop clean and stop snatch: alternatives to the hang. Strength & Conditioning Journal. June 2004;26(3):10-12.

8. Souza A, Shimada S, Koontz A. Ground reaction forces during the power clean. J Strength Cond Res.. August 2002;16(3):423-427.

9. Chiu L, Moore C, Favre M. Powerlifting Versus Weightlifting for Athletic Performance. Strength & Conditioning Journal. October 2007;29(5):55-57.

10. Carlock J, Smith S, Hartman M, et al. The Relationship between Vertical Jump Power Estimates and Weightlifting Ability: A Field-test Approach. J Strength Cond Res. August 2004;18(3):534-539.

11. Channel BT, Barfield JP.  Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys. J Strength Cond Res. September 2008;22(5):1522-1527.

12. Hori N, Newton RU, Andrews AW. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J Strength Cond Res.  2008; 22:412-18.

rev.6.17

Previous post

Knee strength for females: Look to the hip for answers

Next post

Raise Your Cup to a Race Well Run?

The Author

National Academy of Sports Medicine

National Academy of Sports Medicine

Since 1987 the National Academy of Sports Medicine (NASM) has been the global leader in delivering evidence-based certifications and advanced specializations to health and fitness professionals. Our products and services are scientifically and clinically proven. They are revered and utilized by leading brands and programs around the world and have launched thousands of successful careers.